
This article was downloaded by: On: 22 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Asian Natural Products Research

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713454007

Colebroside A, A New Diglucoside of Fatty Acid Ester of Glycerin from *Clerodendrum colebrookianum*

Hui Yang^{ab}; Bei Jiang^a; Ai-Jun Hou^a; Zhong-Wen Lin^a; Han-Dong Sun ^a Laboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China ^b Chemistry Department, College of Life Science and Chemistry, Yunnan University, Kunming, China

To cite this Article Yang, Hui , Jiang, Bei , Hou, Ai-Jun , Lin, Zhong-Wen and Sun, Han-Dong(2000) 'Colebroside A, A New Diglucoside of Fatty Acid Ester of Glycerin from *Clerodendrum colebrookianum*', Journal of Asian Natural Products Research, 2: 3, 177 – 185

To link to this Article: DOI: 10.1080/10286020008039909 URL: http://dx.doi.org/10.1080/10286020008039909

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

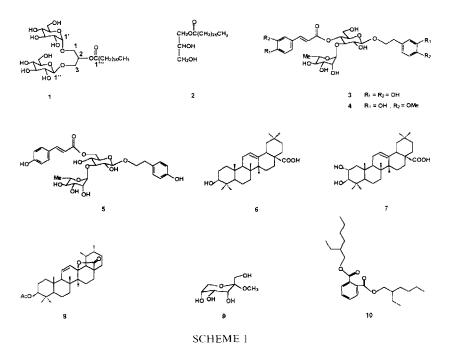
© 2000 OPA (Overseas Publishers Association) N.V. Published by license under the Harwood Academic Publishers imprint, part of The Gordon and Breach Publishing Group. Printed in Malaysia.

COLEBROSIDE A, A NEW DIGLUCOSIDE OF FATTY ACID ESTER OF GLYCERIN FROM CLERODENDRUM COLEBROOKIANUM

HUI YANG^{a,b}, BEI JIANG^a, AI-JUN HOU^a, ZHONG-WEN LIN^a and HAN-DONG SUN^{a,*}

^aLaboratory of Phytochemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, China; ^bChemistry Department, College of Life Science and Chemistry, Yunnan University, Kunming 650091, China

(Received 2 August 1999; Revised 9 September 1999; In final form 22 September 1999)


Colebroside A (1), a new diglucoside of fatty acid ester of glycerin, was isolated from the aerial parts of *Clerodendrum colebrookianum* Walp., along with nine known compounds (2-10). Their structures were elucidated by spectroscopic and chemical methods. Compounds 2, 3, 4, 5, 7, 8, 9 and 10 have been obtained from this plant for the first time.

Keywords: Clerodendrum colebrookianum Walp.; Verbenaceae; Diglucoside of fatty acid ester of glycerin; Colebroside A (1)

INTRODUCTION

Clerodendrum colebrookianum Walp. (Verbenaceae), is distributed widely in the South and Southeast Asia. In China, it mainly grows in the moist and waste place of the western and southern regions of Yunnan province up to an altitude of 280–2100 m [1]. In Chinese folk medicine terminology, C. colebrookianum Walp. has the functions of "expelling toxin by cooling, cooling blood to induce diuresis and purging heat" [2]. It has been used as a remedy for hypertension in India [3]. The chemical investigation of this

^{*} Corresponding author. Tcl.: 86-871-5150660. Fax: 86-871-5216343. E-mail: hdsun@mail.kib.ac.cn.

plant has been reported [3-8]. In order to search for the biologically active constituents from this plant, we reinvestigated this medicinal plant.

In this paper, we wish to report the isolation and structural elucidation of a new compound, named colebroside A (1), as well as nine known compounds, including glyceryl-1-docosoicate (2), acteoside (3) [9], martinoside (4) [10], osmanthuside B₆ (5) [11], oleanolic acid (6) [12], maslinic acid (7) [13], 3β -acetoxyurs-11-en-28, 13-olide (8) [14], 2-O-methylalluloside (9) [15], and bis (2-ethylhexyl) phthalate (10) [16] (Scheme 1).

RESULTS AND DISCUSSION

Colebroside A (1) displayed strong IR bands at 3417(br.) and 1740 cm^{-1} , which suggested the presence of hydroxyl and carboxyl groups. The FABMS showed a molecular ion peak at m/z 879 $[M + 1]^+$, which agreed with a molecular formula $C_{47}H_{90}O_{14}$, this conclusion was supported by its HRFABMS ($[M + 1]^+$ 879.6363, calcd. 879.6409), ¹³C NMR and DEPT spectral data (Table I). The ¹H and ¹³C NMR spectra of 1 exhibited that it had no double bond and carbonyl group except for a carboxyl group. Thus. 1 contained two rings besides the carboxyl group based on a calculation of unsaturation degrees (n = 3). Moreover, the ¹H NMR spectrum showed

С	1	С	1
1	68.1 t	3″	75.1 d
2	71.7 d	4″	70.6 d
2 3	68.1 t	5″	74.6 d
α -Glc		6″	63.5 t
1′	101.3 d	Acyl moiety	
2'	71.0 d	1‴	173.5 s
3'	72.2 d	2‴	34.4 t
4'	69.9 d	3‴	32.3 t
5′	72.9 d	4""-29""	29.7 t
6'	62.6 t	30‴	25.4 t
β -Glc		31‴	20.9 t
1″	105.5 d	32′′′	14.4 q
2″	71.1 d		-

TABLE I 13 CNMR spectral data of 1 in C₅D₅N (100.6 Hz, δ in ppm from TMS)

TABLE II Some principal results from HMQC, ${}^{1}H{}^{-1}H$ COSY and HMBC correlations of 1

Proton	$HMQC(^{13}C)$	$COSY(^{1}H)$	$HMBC(^{13}C)$
1a	1	16,2	
1b	1	1a, 2	1'
2	2	1a, 1b, 3a, 3b	(1), (3), 1'''
3a	3	2,3b	1″
3b	3	2, 3a	
1′	1'	2'	1
1″	1″	2"	3

Two-bond correlations were shown in brackets.

the signals of one primary methyl group (δ 0.84, H-32^{'''}), two methylenes bearing oxygen (δ 4.03, H-1a and 3a; δ 4.76, H-1b and 3b), one oxymethine (δ 5.66, H-2) and two anomeric protons (δ 5.52, H-1' and δ 4.75, H-1"). The ¹³C NMR spectrum revealed one carboxyl group (δ 173.5, C-1^{'''}) and two D-glucopyranosyl groups (δ 101.3, 71.0, 72.2, 69.9, 72.9, 62.6 and δ 105.5, 71.1, 75.1, 70.6, 74.6, 63.5) [15], whose glycosidic linkages were shown to be α and β by the coupling constants (J = 3.4 and 7.4 Hz) of the anomeric proton signals, respectively. Furthermore, exhaustive acidic hydrolysis of 1 gave glucose identified by TLC comparing with authentic sample. This fact also indicated the presence of the glucopyranosyl group. All ¹H and ¹³CNMR signals of 1 were assigned by HMQC, HMBC and ¹H-¹H COSY spectra as shown in Table I and in Experimental section, which suggested 1 to be a diglucoside of lacceroic acid ester of glycerin. The connectivities of the glucosyl units, lacceroyl group and glycerin were determined by the HMBC spectrum (Table II). Consequently, the structure of 1 was established as 1-O-(α -D-glucopyranosyl)-3-O-(β -D-glucopyranosyl)-glyceryl-2-lacceroicate.

The structures of the nine known compounds were characterized by direct comparison of their NMR, IR, UV and MS spectra with those reported previously. Compounds 2, 3, 4, 5, 7, 8, 9 and 10 were isolated from *C. colebrookianum* for the first time.

EXPERIMENTAL SECTION

General Experimental Procedures

Melting points were measured on a XRC-1 micro melting point apparatus and uncorrected. Optical rotations were taken on JASCO-20C digital polarimeter. IR spectra were recorded with Bio-Rad FTS-35 spectrometer. UV spectra were obtained on a UV 210A spectrometer. MS spectra were measured on a VG Auto Spec-3000 spectrometer. NMR spectra were run on Bruker AM-400 and DRX-500 spectrometers. Separation and purification were performed by column chromatography on silica gel (200-300 and 300-400 mesh) and reversed-phases materials (RP-18 and MCI gel CHP-20).

Plant Material

Plant material was collected in September 1996 from Xishuangbanna. Yunnan province, People's Republic of China and identified by Prof. Li Xi-wen. A voucher specimen (96-09-18) was deposited in the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China.

Extraction and Isolation

The air-dried and powdered aerial parts (6.0 kg) of *C. colebrookianum* were extracted with 95% EtOH (3×201) under reflux and then concentrated *in vacuo* to give crude extract (619.0 g). The extract was suspended in H₂O and then successively partitioned with petroleum-ether (60–90°C), EtOAc and n-BuOH to afford petroleum-ether, EtOAc and n-BuOH residues 272.0, 98.0 and 206.4 g. respectively. The petroleum-ether residue was subjected to column chromatography over silica gel eluting with petroleum-ether/chloroform (1:0, 9:1, 3:1 and 0:1), chloroform/acetone (9:1, 3:1 and 0:1) to give fractions 1 VII. Fractions III (20.0 g) and IV (8.0 g) were chromatographed on silica gel column developed with petroleum-ether/chloroform to afford compounds **6** (86 mg) and **8** (24 mg), respectively. Fractions V

(17.5 g), VI (8.0 g) and VII (20.0 g) were subjected to column chromatography and medium pressure column on silica gel with petroleum-ether/ acetone, chloroform/acetone and chloroform/methanol as eluent repeatedly and finally yielded compounds 1 (595 mg), 2 (10 mg), 7 (21 mg) and 10 (117 mg).

After repeated silica gel and reversed phase silica gel (RP-18) as well as MCI gel CHP-20 (eluent: CHCl₃/MeOH, CHCl₃/MeOH/H₂O and MeOH/H₂O) column chromatography, compounds **3** (15.6 g), **4** (2.4 g), **5** (173 mg) and **9** (23 mg) were obtained from the EtOAc residue.

Exhaustive Acidic Hydrolysis

Compound 1 was hydrolyzed at 100°C for 1 h on TLC plates in a chamber filled with conc. HCl and the products were separated with solvent system [n-BuOH–EtOH–H₂O (4:1:5)], glucose was identified by comparison with authentic samples.

Colebroside A (1) $C_{47}H_{90}O_{14}$, colorless wax, $[\alpha]_D^{20.2}$ +71.17 (c 0.139, MeOH); IR (KBr) ν_{max} 3417(br.), 2927, 2856, 1740, 1643, 1465, 1151, 1074, 918 cm⁻¹; ¹H NMR (C₅D₅N, 400 MHz) δ 4.03 (each 1H, m, H-1a and 3a), 4.76 (each 1H, m, H-1b and 3b), 5.66 (1H, m, H-2), 5.52 (1H, d, J = 3.4 Hz, H-1'), 4.03–4.76 (6H, m, H-2'-6'), 4.75 (1H, d, J = 7.4 Hz, H-1"), 4.03–4.76 (6H, m, H-2'-6'), 2.35 (2H, t, J = 7.2 Hz, H-2"'), 1.06–2.07 (58H, m, H-3^{'''}-31^{'''}), 0.84 (3H, t, J = 6.2 Hz, H-32^{'''}); positive ion FABMS m/z 879 [M + 1]⁺ (3), 397 (10), 325 (6), 283 (13), 255 (100), 221 (12), 171 (28), 119(43).

Glyceryl-1-docosoicate (2) C₂₅H₅₀O₄, colorless wax, IR (KBr) ν_{max} 3309 (br.), 2959, 2919, 2851, 1731, 1471, 1394, 1288, 1198, 1180, 1124, 991 cm⁻¹; ¹³C NMR (CDCl₃, 100.6 MHz) δ 65.2 (t, C-1), 70.34 (d, C-2), 63.40 (t, C-3), 174.2 (s, C-1'), 34.16 (t, C-2'), 31.69 (t, C-3'), 29.30 (t, C-4'-19'), 24.91 (t, C-20'), 22.63 (t, C-21'), 14.00 (q, C-22'); ¹H NMR (CDCl₃, 400 MHz) δ 4.12 (1H, dd, J = 11.6, 6.1 Hz, H-1a), 4.18 (1H, dd, J = 11.6, 4.5 Hz, H-1b), 3.91 (1H, m, H-2), 3.57 (1H, dd, J = 11.5, 5.8 Hz, H-3a), 3.68 (1H, dd, J = 11.5, 3.9 Hz, H-3b), 2.33 (2H, t, J = 7.5 Hz, H-2'), 1.23–1.60 (38H, m, H-3'-21'), 0.85 (3H, t, J = 7.0 Hz, H-22'); positive ion FABMS m/z 415 [M + 1]⁺ (5), 391 (100), 359 (25), 331 (68), 313 (20), 279 (36), 239 (34), 167 (15), 149 (88), 113 (20).

Acteoside (3) $C_{29}H_{36}O_{15}$, amorphous white powder, $[\alpha]_D^{21.6} - 79.31$ (c 0.58, MeOH), UV (EtOH) λ_{max} 203.5, 220, 245, 286, 296, 332.5 nm; IR (KBr) ν_{max} 3400(br.), 2925, 1685, 1590, 1510, 1435, 1360, 1270, 1150, 1110, 1040, 805 cm⁻¹; negative ion FABMS m/z 623 $[M - 1]^-$ (100); Its ¹H and ¹³C NMR spectral data, see Tables III and IV.

Proton	c,	4	ŝ
Aglycone 3	$\frac{1}{10} = \frac{1}{10} $	(1 C - 7 P H1)(2 9	(C 8 - 7 P HU92 9
1 რ			7.06 (1H, d, J = 8.0)
5	6.67 (1H, d, J = 8.0)	6.79 (IH, d, J = 8.1)	7.06 (1H, d, $J - 8.0$)
6	6.55 (1H, dd, J = 8.0, 2.0)	6.67 (1H, dd, J = 8.1, 2.1)	6.76 (1H, d, J = 8.2)
α_{a}	3.71 (1H, dd, $J = 16.4$, 8.0)	3.72 (1H, dd, $J = 16.3$, 8.0)	3.26-4.38 (1H, m)
$\alpha_{\rm b}$	4.03 (1H, dd, J = 16.4, 8.0)	4.05 (1H, dd, J = 16.3, 8.0)	3.26-4.38 (2H, m)
Ð.	2.78 (2H, t, J = 8.0)	2.08 (2H, t, J = 7.4)	2.93 (2H, t, J = 7.3)
OMe		3.79 (3H, s)	
Acyl moiety			
2 ,	7.06 (1 H, d, J = 2.0)	7.19 (1H, d, $J = 1.6$)	6.94 (1H, d, J = 7.8)
<i>с</i> о			7.31 (1H, d, $J = 7.7$)
S	$6.78 (\mathrm{IH},\mathrm{d},J-8.0)$	6.81 (IH, d, J - 8.2)	7.31 (1H, d, $J = 7.7$)
6	6.94 (1H, dd, J = 8.0, 2.0)	7.07 (1H, dd, J = 8.2, 1.6)	6.94 (1H, d, J = 7.8)
£	6.27 (III, d, <i>J</i> = 15.8)	6.34 (III, d, $J = 15.9$)	6.26 (1H, d, <i>J</i> = 15.8)
λ	7.59 (1H, d, J = 15.8)	7.65 (1H, d, $J = 15.9$)	7.58 (1H, d, <i>J</i> = 15.8)
OMe			
Glucosyl group			
-	4.36 (1H, d, J – 7.8)	4.37 (1H, d, J = 8.0)	4.36 (1H, d, J = 7.8)
2-5	3.28–3.94 (4H. m)	3.28-3.93 (4H, m)	3.26 -4.38 (4H, m)
$6_{\rm a}$			4.33 (1H, dd, J = 12.2)
6 _b			4.68 (1H, dd, <i>J</i> = 12.2)
Rhamnosyl group			
· · ·	5.19 (1H br.s)	5.19 (1H, d, $J = 1.3$)	5.18 (1H, s)
2-5	3.283.94 (4H, m)	3.28–3.93 (4H, m)	3.26-4.38 (4H, m)
6	1.09 (3H, d, J = 6.0)	1.09 (3H, d, $J = 6.2$)	1.07 (3H, d, J = 6.4)

HUI YANG et al.

183

Carbon	3	4	5
Aglycone		·····	
1	131.5 s	133.0 s	127.7 s
2	116.3 d	113.1 d	116.2 d
3	145.9 s	147.5 s	130.0 c
4	144.5 s	147.4 s	146.8 s
5	117.1 d	117.1 d	130.0 c
6	121.3 d	121.2 d	116.2 c
α	72.1 t	72.1 t	72.1 t
β	36.4 t	36.5 t	37.2 t
OMe		56.6 q	
Acyl moiety			
1	127.6 s	127.7 s	127.2 s
2 3	114.7 d	112.0 d	129.7 d
3	147.9 s	149.4 s	116.5 c
4	149.6 s	150.8 s	149.7 s
5	116.5 d	116.6 d	116.5 d
6	123.2 d	124.3 d	129.7 d
α	168.3 s	168.3 s	168.3 s
β	115.3 d	115.2 d	114.8 c
γ	146.6 d	147.8 d	147.2 c
OMe		56.6 q	
Glucosyl group			
1	104.0 d	104.2 d	104.2 c
2	75.8 d	76.0 d	76.1 d
2 3 4	81.6 d	81.5 d	81.6 c
4	70.5 d	70.7 d	70.7 d
5	76.0 d	76.2 d	76.1 c
6	62.3 t	62.4 t	64.7 t
Rhamnosyl group)		
1	102.9 d	102.9 d	102.9 c
2	70.3 d	70.4 d	70.4 c
3	73.7 d	73.8 d	73.8 0
4	72.2 d	72.3 d	72.3 ¢
5	72.0 d	72.0 d	70.7 c
6	18.4 q	18.4 g	18.4 0

TABLE IV The ¹³C NMR spectral data of compounds 3, 4 and 5 in CD₃OD (100.6 MHz, δ in ppm from TMS)

Martinoside (4) $C_{31}H_{40}O_{15}$, amorphous white powder, $[\alpha]_D^{21.6} - 67.52$ (c 0.411, MeOH), UV (EtOH) λ_{max} 220, 229, 285, 299, 328 nm; IR (KBr) ν_{max} 3395 (br.), 2920, 1690, 1620, 1585, 1505, 1430, 1275, 1150, 1025, 805 cm⁻¹; negative ion FABMS m/z 651 [M – 1]⁻ (100); Its ¹H and ¹³C NMR spectral data, see Tables III and IV.

Osmanthuside B_6 (5) $C_{29}H_{36}O_{13}$, amorphous white powder, $[\alpha]_D^{21.6}$ -48.84 (c 0.510, MeOH), UV (EtOH) λ_{max} 220, 245, 286, 332 nm; IR (KBr) ν_{max} 3450(br.), 2926, 1680, 1598, 1505, 1435, 1362, 1272, 1150, 1042, 809 cm⁻¹; negative ion FABMS m/z 591 [M – 1]⁻ (100); Its ¹H and ¹³C NMR spectral data, see Tables III and IV.

 $\beta\beta$ -acetoxyurs-11-en-28,13-olide (8) $C_{32}H_{48}O_4$, colorless needles, m.p.: 230 232°C, $[\alpha]_D$ +47.91 (c 0.454, CHCl₃), IR (KBr) ν_{max} 2993, 2960, 2922, 2853, 1769, 1728, 1469, 1392, 1364, 1246, 1225, 1143, 1136, 1026, 993 cm⁻¹; ¹H NMR (C₅D₅N, 400 MHz) δ 4.50 (1H, dd, J = 10.9, 5.6 Hz, H-3 α), 5.47 (1H, dd, J = 10.3, 3.6 Hz, H-11), 6.02 (1H, d, J = 10.3 Hz, H-12), 0.85 (each 3H, s, H-23 and 24), 0.94 (3H, s, H-25), 1.06 (3H, s, H-26), 1.21 (3H, s, H-27), 1.01 (3H, d, J = 5.8 Hz, H-29), 0.90 (3H, d, J = 6.1 Hz, H-30), 2.02 (3H, s, acetoxy)H-2'); ¹³C NMR (C₅D₅N, 100.6 MHz) δ 37.97 (t, C-1), 23.57 (t, C-2), 80.61 (d, C-3), 37.36 (s, C-4), 54.91 (d, C-5), 17.49 (t, C-6), 31.11 (t, C-7), 40.57 (s, C-8), 53.15 (d, C-9), 36.64 (s, C-10), 135.63 (d, C-11), 127.07 (d, C-12), 87.47 (s, C-13), 41.35 (s, C-14), 26.72 (t, C-15), 23.17 (t, C-16), 43.85 (s, C-17), 57.04 (d, C-18), 49.65 (d, C-19), 50.57 (d, C-20), 29.66 (t, C-21), 31.42 (t, C-22), 27.73 (q, C-23), 17.22 (q, C-24), 16.19 (q, C-25), 18.79 (q, C-26), 18.24 (q, C-27), 179.16 (s, C-28), 17.98 (q, C-29), 18.9 (q, C-30), 170.8 (s, acetoxy C-1'), 21.29 (q, acetoxy C-2'); EIMS (70 eV) m/z 496 [M]⁺ (31), 468 [M - CO]⁺ (16), 452 [M - COO]⁺ (86). 438 (10), 332 (3), 300 (13), 277 (61), 263 (84), 248 (20), 217 (38), 204 (74), 189 (83).

Bis (2-ethylhexyl) phthalate (10) $C_{24}H_{38}O_4$, colorless oil, UV (CHCl₃) λ_{max} 203, 225, 270, 278 nm; IR ν_{max} 2961, 2932, 2862, 1730, 1600, 1581, 1464, 1382, 1275, 1124, 1074, 1040, 959 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.65 (each 1H, dd, J = 5.6, 2.2 Hz, H-3 and 6), 7.45 (each 1H, m, H-4 and 5), 4.17 (each 2H, dd, J = 11.1, 5.2 Hz, H-1' and 1"), 1.64 (each 1H, m, H-2' and 2"), 1.38 (each 2H, m, H-3' and 3"), 1.28 (each 2H, m, H-4', 4", 5', 5", 7' and 7"). 0.86 (each 3H, m, H-6', 6", 8' and 8"); ¹³C NMR (CDCl₃, 100.6 MHz) δ 132.3 (s, C-1 and 2), 130.7 (d, C-3 and 6), 128.6 (d, C-4 and 5), 167.5 (s, C- α' and α''), 67.91 (1, C-1' and 1"), 38.61 (d, C-2' and 2"), 23.62 (t, C-3' and 3"), 22.80 (t, C-4' and 4"), 28.77 (t, C-5' and 5"), 13.83 (q, C-6' and 6"), 30.23 (t, C-7' and 7"), 10.77 (q, C-8' and 8"); positive ion FABMS m/z 391 [M + 1]⁴ (56), 279 (11), 261 (5), 167 (29), 149 (100), 113 (33), 71 (37).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (29772039).

References

- Kunming Institute of Botany, Chinese Academy of Sciences, *Flora Yunnanica*, Vol. 1, Science Press, Beijing, 1977, pp. 469–470.
- [2] Yunnan Medicinal Material Corporation, *Resource Lists of Yunnan Traditional Chinese Medicine*, Science Press, Beijing, p. 451.
- [3] K.C. Joshi, P. Singh and A. Mehra, Planta Medica, 1979, 37, 64 66.

- [4] M. Singh, P.K. Chauduri, R.P. Sharma et al., Indian J. Chem., Sect. B: Org. Chem. Ind. Med. Chem. Soc., 1995, 34B(8), 753–754.
- [5] P. Goswami and J. Kotoky, J. Indian Chem. Soc., 1995, 72(9), 647.
- [6] T.N. Misra, R.S. Singh, H.S. Pandey et al., Fitoterapis, 1995, 66(6), 555-556.
- [7] P. Goswami, J. Kotok, Ze-Nai Chen and Yang Lu, Phytochemistry, 1996, 41(1), 279-281.
- [8] T.N. Misra, R.S. Singh, H.S. Pandey et al., Indian J. Chem., Sect. B: Org. Chem. Ind. Med. Chem. Soc., 1997, 36B(2), 203–205.
- [9] S. Hiroko, S. Yutaka, O. Kazunoki et al., Phytochemistry, 1987, 26(8), 1981–1983.
- [10] S. Hiroshi, T. Heihachiro, E. Tohru et al., Chem. Pharm. Bull., 1978, 26(7), 2111-2121.
- [11] M. Sugiyama and M. Kikuchi, Chem. Pharm. Bull., 1990, 38(11), 2953-2955.
- [12] K. Tori, S. Seo, A. Shimaoka and Y. Tomita, Tetrahedron Lett., 1974, 4227-4230.
- [13] Qin-Shi Zhao, Jun Tian, Jian-Min Yue et al., Phytochemistry, 1998, 48(6), 1025-1029.
- [14] K. Masaaki, T. Tadamasa and M. Haruo, Chem. Pharm. Bull., 1983, 31(5), 1567-1571.
- [15] De-Quan Yu, Jun-Shan Yang and Jing-Xi Xie, Dictionary of Analytic Chemistry (Vol. V), Analysis of Nuclear Magnetic Resonance Spectra, Chemical Industry Press, Beijing, 1993, p. 822 and 827.
- [16] M. Kocihi, A. Giichi, I. Shungo and T. Naraichei, J. Oil Chemists' Soc., 1954, 3, 2-6.